If it's not what You are looking for type in the equation solver your own equation and let us solve it.
40=-4.9t^2+30t
We move all terms to the left:
40-(-4.9t^2+30t)=0
We get rid of parentheses
4.9t^2-30t+40=0
a = 4.9; b = -30; c = +40;
Δ = b2-4ac
Δ = -302-4·4.9·40
Δ = 116
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{116}=\sqrt{4*29}=\sqrt{4}*\sqrt{29}=2\sqrt{29}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-30)-2\sqrt{29}}{2*4.9}=\frac{30-2\sqrt{29}}{9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-30)+2\sqrt{29}}{2*4.9}=\frac{30+2\sqrt{29}}{9.8} $
| 8(2z+5)=12+18z-6 | | -5(2p-18)+10=2(-2p+5) | | 2/h+2h=9 | | 2x^2+4x=25 | | 2(-2v-1)=-5(2v+1)+9v | | 20=-4.9t^2+30t | | x+-0.9=2.8 | | -8-15g=-2(6g-20) | | 12+4x-x2=0 | | 5(2x+3)-23=1/3(4x+6)+8 | | P=185+0.03x | | -16-q-13=2(2q+20)+16 | | x-x(0.1)=200 | | 4^8x=255 | | -6(-k+7)=9k | | 5x+7+3x-9=90 | | 1/2(6x+4)=13 | | -15.5b=-11.16-16.7b | | 1.25+4x=1+6x | | 7.34-15.7q=-19.7q+11.34 | | x+-46=5 | | -9.8w-18.07+14.5w=8.4w+1.54 | | -12.18+5.6j=-12j+17.74 | | 4x-5(x-2)=11 | | (3a/a^2-49)-(3/a+7)=(1/a-7) | | 8.4v-18.62=14.06+9.6v+2.6v | | 8k-16=8+5k | | 5n^2-20n+8=7 | | 3t=2t+20 | | -(x-4)=3(x+4) | | 10x+8x=3 | | x^2-3x-1617=0 |